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Abstract—A decentralized controller is presented along with
sufficient conditions for stability in leader-based synchroniza-
tion of communication-delayed networked agents. The agents
have heterogeneous dynamics modeled by uncertain, nonlinear
Euler-Lagrange equations of motion affected by heterogeneous,
unknown, exogenous disturbances. The developed controller
requires only one-hop (delayed) communication from network
neighbors and the communication delays are assumed to be
heterogeneous, uncertain and time-varying. The presented ap-
proach uses a Lyapunov-based stability analysis in conjunction
with Lyapunov-Krasovskii functionals to provide sufficient con-
ditions which depend on the upper bound of the heterogeneous
delays, feedback gains, and network connectivity, among other
factors.

I. INTRODUCTION

Synchronization is a type of cooperative control for net-
worked systems in which autonomous agents act indepen-
dently to accomplish a network-wide goal, and generally
refers to matching the states of networked dynamical sys-
tems (cf. [1]–[4]). Example synchronization applications
include power networks, collective satellite interferometry,
and surveillance by autonomous vehicles (cf. [3], [5]). Syn-
chronizing controllers are typically developed based on a
decentralized interaction framework, in which agents use
sensing or communication with network neighbors to com-
pute a control policy. Network leaders can be included in syn-
chronization applications so that the networked “follower”
agents synchronize to some useful state trajectory instead of
a constant consensus value dependent on initial conditions,
where the network leader agent may simply be a preset time-
varying trajectory or state of a physical system with which
the follower agents interact. Restricting interaction with the
leader agent to a strict subset of the follower agents provides
a framework which is more applicable in practical scenarios.

Communication delay, also known as broadcast, coupling
or transmission delay, is a phenomenon in which inter-
agent interaction is delayed during information exchange.
Even a small communication delay, such as that caused
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by information processing or a communication protocol,
can cause networked autonomous systems to become un-
stable (cf. [5]), and hence, analysis is motivated to ensure
stability of the control objective. Controllers developed in
[6]–[15] are designed to provide stability for a network
of communication-delayed autonomous synchronizing agents
without the presence of a network leader. As demonstrated in
[6], asymptotic convergence towards a fixed consensus point
is achievable, despite the effects of the communication delay,
for synchronization without a leader. The communication-
delayed synchronization problem is generalized in [3], [16]–
[18] to include a network leader, wherein every follower
agent interacts with the leader agent. As illustrated in [3],
asymptotic convergence towards the leader trajectory is
achievable for synchronizing agents with full leader connec-
tivity, despite the effects of communication delay.

Synchronization with a time-varying leader trajectory and
limited leader connectivity presents a more challenging prob-
lem: if an agent is not aware of the leader’s state, it must
depend on the delayed state of neighboring follower agent(s),
i.e., the effect of a change in the leader’s state may not
affect a follower agent until the time duration of multiple
communication delays has passed. The controllers in [19]–
[21] are developed to address this more challenging method
of communication-delayed synchronization. The work in
[19] is developed for follower agents with single integrator
dynamics, undelayed state communication and uniformly
delayed communication of control effort. The controller in
[20] is designed for follower agents with single integrator
dynamics and uniformly delayed state communication. Syn-
chronization with uniformly delayed state communication is
investigated in [21] for follower agents with nonlinear dy-
namics; however, the development assumes that the follower
agents’ dynamics are globally Lipschitz, which is restrictive
and excludes many physical and electrical systems. Because
globally Lipschitz dynamics can be uniformly upper-bounded
by a linear expression, the result in [21] develops a stability
analysis which does not account for general nonlinearities.
Hence, the developments in [19]–[21] do not directly ap-
ply to networks with agents which have general nonlinear
dynamics. A new strategy is required for demonstrating
stability in synchronization of a network of agents with
general nonlinear dynamics, delayed communication, and
limited connectivity to a time-varying leader trajectory.

This paper considers the problem of synchronization of
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a leader-follower network of agents with heterogeneous
dynamics described by nonlinear Euler-Lagrange equations
of motion affected by an unknown, time-varying, exogenous
input disturbance. The leader agent has a time-varying tra-
jectory and is assumed to interact with at least one follower
agent. The follower agents are delayed in communicating
state information and do not communicate control effort in-
formation. The communication delay is assumed to be uncer-
tain, heterogeneous, time-varying and bounded. A Lyapunov-
based stability analysis using Lyapunov-Krasovskii (LK)
functionals is provided to develop sufficient conditions for
uniformly ultimately bounded (UUB) convergence to the
leader state for each follower agent.

II. PROBLEM FORMULATION

A. Graph theory preliminaries

Consider a network with one leader and a finite number
F ∈ Z>0 of follower agents. The interaction among the
follower agents is described by a fixed undirected graph
GF = {VF , EF }, where VF , {1, . . . , F} is the node set rep-
resenting the follower agents and EF ⊆ VF ×VF is an edge
set representing the communication links among the follower
agents. An undirected edge, represented by the pair (j, i),
belongs to EF if agents i, j ∈ VF communicate with each
other. The neighbor set in GF for agent i ∈ VF is defined
as NFi , {j ∈ VF | (j, i) ∈ EF }. Connections in GF are
described by the adjacency matrix A = [aij ] ∈ RF×F , where
aij > 0 if (j, i) ∈ EF and aij = 0 otherwise. The Laplacian
matrix LF ∈ RF×F of graph GF is defined as LF , D−A,
where D , diag

{∑
j∈NF1

a1j , . . . ,
∑
j∈NFF

aFj

}
is the

degree matrix. A leader-included directed supergraph of GF
can be constructed as G = {VF ∪ L, EF ∪ EL}, where the
node L represents the leader agent and the ordered pair
(i, L) ∈ EL if and only if agent i ∈ VF receives information
from the leader. The diagonal leader-connectivity matrix
B = diag {b1, . . . , bF } ∈ RF×F is defined such that bi > 0
if (i, L) ∈ EL and bi = 0 otherwise.

Assumption 1. The graph GF is connected and at least one
follower agent i ∈ VF receives information from the leader.

Throughout the rest of this paper, LF and B will be used
to succinctly describe the interactions among the follower
agents and the interactions between the follower agents
and the leader. For brevity, let LB , (LF +B) ⊗ Im ∈
RFm×Fm, where m is the dimension of the subsequently
introduced state and ⊗ denotes the Kronecker product.
Provided Assumption 1 is satisfied, then LB is symmetric
and positive definite [22].

B. Dynamic Model and Properties

Let the dynamics of follower agent i ∈ VF be represented
by Euler-Lagrange equations of motion of the form

Mi (qi) q̈i+Ci (qi, q̇i) q̇i+Fi (q̇i)+Gi (qi) = ui+di (t) , (1)

where qi ∈ Rm is the generalized configuration coordinate,
Mi : Rm → Rm×m is the inertia matrix, Ci : Rm × Rm →

Rm×m is the Coriolis/centrifugal matrix, Fi : Rm → Rm
represents the effects of friction, Gi : Rm → Rm represents
gravitational torques, ui ∈ Rm is the vector of control inputs,
and di : R→ Rm is the time-varying, unknown, exogenous
input disturbance. The time-varying state of the leader is
denoted by qL : R→ Rm, which is communicated to at least
one of the follower agents. For simplicity in analysis, the
following property and assumptions are used concerning the
Euler-Lagrange dynamics, external disturbance and leader
trajectory.

Property 1. [23] For each follower agent i ∈ VF , the inertia
matrix is positive definite and symmetric, and there exist
positive constants m, m̄ ∈ R such that the inertia matrix
satisfies the inequality m ‖ξ‖2 ≤ ξTMi (ψ) ξ ≤ m̄ ‖ξ‖2 for
all ψ, ξ ∈ Rm and i ∈ VF .

Assumption 2. [24] For each follower agent i ∈ VF , the
dynamics are sufficiently smooth such that the functions
Mi, Ci, Fi, Gi are first-order differentiable, i.e., the first-
order derivative is bounded if qi, q̇i, q̈i ∈ L∞.

Assumption 3. For each follower agent i ∈ VF , the vector of
time-varying input disturbances is continuous and bounded
such that supt∈R ‖di (t)‖ ≤ d̄ for some positive constant
d̄ ∈ R.

Assumption 4. The leader trajectory qL is sufficiently
smooth such that qL ∈ C2 and bounded such that
qL, q̇L, q̈L ∈ L∞.

The communication delay between follower agents is
represented such that if the controller ui is a function of
a neighbor’s state qj ∈ VF , then the controller at time t only
has access to the information qj (s), s ≤ t − τji (t) where
τji (t) : R → R≥0 is the positive, time-varying, uncertain
communication delay; i.e., at time t, agent i ∈ VF is not
aware of the state of neighbor j ∈ VF (i 6= j) from the time
t−τji (t) to t. The communication delays in the network need
not be homogenous, i.e., the communication delays may be
different for each interaction link. The communication delay
may even differ between an interacting pair of agents, i.e.,
it may be that τij (t) 6= τji (t) for i, j ∈ VF . The following
assumption specifies the class of delays considered in this
paper.

Assumption 5. The unknown, time-varying delay τji is
bounded above by a known constant τ̄ ∈ R>0 such that
supt∈R τji (t) < τ̄ , τji is differentiable, and τji changes
sufficiently slowly such that supt∈R |τ̇ji (t)| < 1, for every
(j, i) ∈ EF . Additionally, there is no delay in access to the
leader’s state, qL, and no delay in agent i ∈ VF knowing its
own state, qi.

For implementation purposes, it is also assumed that for
every agent i ∈ VF , the delayed state qj (t− τji (t)) has
been communicated to agent i from every neighbor j ∈ NFi
for at least τ̄ seconds before control implementation.

684



C. Control objective

The network-wide objective is to cooperatively drive the
states of the networked agents towards the state of the
network leader such that ‖qL (t)− qi (t)‖ → 0 as t → ∞
for all i ∈ VF using decentralized one-hop communication,
despite modeling uncertainties; exogenous disturbances; un-
known, heterogeneous, time-varying communication delays
between neighbors; and only a subset of the follower agents
communicating with the leader. Note, however, that due to
the effects of disturbances and communication delays, an
attempt to satisfy the above goal may only result in the
ultimately bounded result lim supt→∞ ‖qL (t)− qi (t)‖ ≤ ε
for some constant ε ∈ R>0.

III. CONTROLLER DEVELOPMENT

Error signals used for feedback controllers in net-
work synchronization typically take the form ei ,∑
j∈NFi

aij (qj (t)− qi (t)) + bi (qL (t)− qi (t)) (cf. [1]–
[4]). However, because communication is delayed in the
network, the error signal ei is not implementable in this
scenario. Alternatively, the delayed feedback error signal
eτi ∈ Rm is introduced as

eτi ,
∑
j∈NFi

aij (qj (t− τji (t))− qi (t))

+ bi (qL (t)− qi (t)) ,

and an auxiliary delayed error signal rτi ∈ Rm is analo-
gously defined as

rτi ,
∑
j∈NFi

aij (q̇j (t− τji (t))− q̇i (t))

+ bi (q̇L (t)− q̇i (t)) + λeτi, (2)

where λ ∈ R>0 is a constant control gain. Thus, neighbors’
delayed state and state derivative are to be used for control
purposes with the implementable error signals eτi and rτi.1

A communication-delayed proportional-derivative (PD) con-
troller, based on one-hop neighbor feedback, is designed for
agent i ∈ VF as

ui = krτi, (3)

where k ∈ R>0 is a constant control gain. Note that, as
opposed to the controller in [20], the difference between a
neighbor’s delayed state and an agent’s own state delayed
by the same amount is not used in the controller, since the
communication delay is unknown.

IV. CLOSED-LOOP ERROR SYSTEM

So that a network-wide closed-loop error system may
be succinctly described, let the time-varying communica-
tion delays corresponding to each communication channel
{τji | (j, i) ∈ EF } be serialized by a surjective mapping to

1It is assumed that a neighbor’s state derivative is measured by that
neighbor and then communicated; i.e., this approach does not solve the
communication-delayed output feedback problem. Numerical computation
of the delayed state derivative would be skewed by effects of the time-
varying delay.

the set {τl | (l ∈ {1, . . . ,Γ}) ∧ (τl : R→ R≥0)} such that
τp (t) = τq (t) ∀t ∈ R if and only if p = q, where
Γ ∈ Z>0 is the number of unique communication delays
in the set {τji | (j, i) ∈ EF }.2 In other words, each time-
varying delay τji, (j, i) ∈ EF is equivalent to only one
of the serialized delays τl, l ∈ {1, . . . ,Γ}, and each se-
rialized delay τl, l ∈ {1, . . . ,Γ} is equivalent to at least
one of the delays τji, (j, i) ∈ EF . This representation
facilitates convenient description of communication channels
which have the same delay. Additionally, let the matrix
Al ,

[
alij
]
⊗ Im ∈ RFm×Fm be defined with alij ∈ R

such that alij = aij if τji ≡ τl and alij = 0 otherwise.
Note that

∑Γ
l=1Al = A ⊗ Im; in other words, the nonzero

components in Al are the edge weights which correspond to
communication links which all have the same communication
delay τl. Finally, let the vector Qτl ∈ RFm be defined as
Qτl (t) , Q (t− τl), where Q ,

[
qT1 , . . . , q

T
F

]T
.

For notational brevity, the networked systems’ dynamics
are conglomerated into block matrices and composite vectors
as

M , diag {M1, . . . ,MF } ∈ RFm×Fm,
C , diag {C1, . . . , CF } ∈ RFm×Fm,

F ,
[
FT1 , . . . , F

T
F

]T ∈ RFm,

G ,
[
GT1 , . . . , G

T
F

]T ∈ RFm,

U ,
[
uT1 , . . . , u

T
F

]T ∈ RFm,

d ,
[
dT1 , . . . , d

T
F

]T ∈ RFm,

such that

M (Q) Q̈+C
(
Q, Q̇

)
Q̇+F

(
Q̇
)

+G (Q) = U+d (t) . (4)

Non-implemented error signals E , QL −Q ∈ RFm and
R , Ė + λE ∈ RFm are introduced to develop a network-
wide closed-loop error system, where QL , 1F ⊗qL ∈ RFm
and 1F is an F -dimensional column vector of ones. Clearly,
if ‖E‖ → 0, then the control objective is achieved.

By taking the time-derivative of R and premultiplying by
the block inertia matrix M , the closed-loop error system is
represented using (3) and (4) as

MṘ = CQ̇+ F +G− d+MQ̈L + λMĖ − kRτ , (5)

where

Rτ ,
[
rTτ1, . . . , r

T
τm

]T
=

Γ∑
l=1

Al
(
Q̇τl + λQτl

)
− ((D +B)⊗ Im)

(
Q̇+ λQ

)
+ (B ⊗ Im)

(
Q̇L + λQL

)
.

Throughout the rest of the paper, functional dependency is
omitted where the meaning is clear. After using the fact that

2This approach does not omit the case in which some communication
links have no delay.
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(
Q̇L + λQL

)
∈ Null (LF ⊗ Im) due to the structure of the

Laplacian matrix and using the First Fundamental Theorem
of Calculus, (5) may be re-expressed as

MṘ =CQ̇+ F +G− d+MQ̈L + λMĖ − kLBR

+ k

Γ∑
l=1

AlΥl, (6)

where Υl ,
´ t
t−τl

(
Q̈ (s) + λQ̇ (s)

)
ds. The terms

CQ̇, F,G, d,MQ̈L, λMĖ in (6) can be compensated for
using robust control methods; however, compensating for
the term k

∑Γ
l=1AlΥl is difficult due to the delayed state

and multiplication by the gain k. The following sections
demonstrate that the decentralized controller in (3) yields
convergence to a neighborhood around the leader state for
each follower agent despite this delay-contributing term for
small enough time-varying heterogeneous network delays.

V. STABILITY ANALYSIS

Before the stability analysis is presented, some facilitating
constants, functions, and sets are introduced. Let c ∈ R>0

denote a tunable constant parameter and let the constant
c ∈ R be defined as c , c

(
λ− 1

2

)
. Also let the constants

φ1, φ2 ∈ R≥0 be tunable parameters, where

φ1 ≥ 1. (7)

Let the auxiliary constants k, η, θ ∈ R be defined as
k , k

(
λmin (LB)− τ̄k3

2

)
− c

2 , η , min
{
c
2 ,

k
6

}
, and

θ , min
{
η, φ1

2τ̄ ,
φ2

2 ,
φ2

2τ̄

}
, where λmin (·) denotes the min-

imum eigenvalue. The stability analysis is constructed with
the state y ∈ R2Fm+3 defined as the composite vector3

y ,
[
ZT ,Ψ

1
2
1 ,Ψ

1
2
2 ,Ψ

1
2
3

]T
, where Z ∈ R2Fm is the compos-

ite error vector Z ,
[
ET RT

]T
, and Ψ1,Ψ2,Ψ3 denote

LK functionals defined as

Ψ1 ,
ΓĀ

k2

ˆ t

t−τ̄

ˆ t

s

∥∥∥Q̈ (σ) + λQ̇ (σ)
∥∥∥2

dσds,

Ψ2 ,
τ̄Γ2Ā

mω

(
2 (k + 1)

km
+

1

k

)
·

Γ∑
l=1

ˆ t

t−τl

∥∥∥Al (Q̇ (σ) + λQ (σ)
)∥∥∥2

dσ,

Ψ3 ,
τ̄Γ2Ā

mω

(
2 (k + 1)

km
+

1

k

)
·

Γ∑
l=1

ˆ t

t−τl

ˆ t

s

∥∥∥Al (Q̇ (σ) + λQ (σ)
)∥∥∥2

dσds,

where a · b denotes standard multiplication for a, b ∈ R,
Ā , λmax

(∑Γ
l=1AlATl

)
, λmax (·) denotes the maximum

3The LK functionals are interpreted as time-varying signals and are
incorporated into the overall system state to facilitate the stability analysis.

eigenvalue, and the unknown constant ω ∈ R is defined
as ω , 1 − supt∈R,l∈1,...,Γ τ̇l (t), which is positive by
Assumption 5.

To facilitate the description of the UUB result in the fol-
lowing stability analysis, the constants Nd0, Nd1, Nd2 ∈ R≥0

are defined as

Nd0 , d̄+ m̄ sup
t∈R

∥∥∥Q̈L∥∥∥+ sup
t∈R

∥∥∥S0

(
QL, Q̇L

)∥∥∥ , (8)

Nd1 ,
2ΓĀ

km2
λmax (LB) d̄+ sup

t∈R

∥∥∥S1

(
QL, Q̇L

)∥∥∥ , (9)

Nd2 ,
ΓĀd̄2

m2

(
1

k2
+

1

k

)
+ sup

t∈R

∣∣∣S2

(
QL, Q̇L

)∣∣∣ , (10)

and the functions Ñ0 : Π6
p=1RFm → RFm, Ñ1 :

Π5
p=1RFm → RFm, Ñ2 : Π4

p=1 → R are defined as

Ñ0 , S0

(
Q, Q̇

)
− S0

(
QL, Q̇L

)
+ f0

(
Q, Q̇, E,R

)
,

Ñ1 , S1

(
Q, Q̇

)
− S1

(
QL, Q̇L

)
+

2ΓĀ

m2
LBLBR,

Ñ2 , S2

(
Q, Q̇

)
− S2

(
QL, Q̇L

)
,

where the auxiliary functions S0 : RFm × RFm → RFm,
S1 : RFm × RFm → RFm, S2 : RFm × RFm → R≥0,
f0 : Π4

p=1RFm → RFm are defined as

S0

(
Q, Q̇

)
, CQ̇+ F +G,

S1

(
Q, Q̇

)
,− 2ΓĀ

k
LBM

−2S0

(
Q, Q̇

)
+

2ΓĀ

k
λLBM

−1Q̇

+ 2ΓĀLBM
−2

Γ∑
l=1

Al
(
Q̇+ λQ

)
,

S2

(
Q, Q̇

)
,ΓĀ

[(
1

k2m2
+

1

km2

)∥∥∥S0

(
Q, Q̇

)∥∥∥2

+

(
2

k2m2
d̄+

2λ

k2m

∥∥∥Q̇∥∥∥)∥∥∥S0

(
Q, Q̇

)∥∥∥
+

2

k2m
λ
∥∥∥Q̇∥∥∥ d̄+

(
2

km2

∥∥∥S0

(
Q, Q̇

)∥∥∥+
2λ

km

∥∥∥Q̇∥∥∥)
·

∥∥∥∥∥
Γ∑
l=1

Al
(
Q̇+ λQ

)∥∥∥∥∥+

(
λ2

k2
+

1

km
λ2

)∥∥∥Q̇∥∥∥2

+

(
1

m2
+

2

km2
d̄

)∥∥∥∥∥
Γ∑
l=1

Al
(
Q̇+ λQ

)∥∥∥∥∥
2]

+
Γ2Ā

mω

(
2 (k + 1)

km
+

1

k

) Γ∑
l=1

∥∥∥Al (Q̇+ λQ
)∥∥∥2

,

f0

(
Q, Q̇, E,R

)
, λMR− λ2ME +

1

2
ṀR.
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The signals Ñ0, Ñ1, Ñ2 contain terms which can be upper-
bounded by a function of the error signals E and R. By [25,
Lemma 5], there exist strictly increasing, radially unbounded
functions ρ0, ρ1, ρ2 : R≥0 → R≥0 which upper-bound
Ñ0, Ñ1, Ñ2 as4∥∥∥Ñ0

∥∥∥ ≤ ρ0 (‖Z‖) ‖Z‖ ,
∥∥∥Ñ1

∥∥∥ ≤ ρ1 (‖Z‖) ‖Z‖ ,∣∣∣Ñ2

∣∣∣ ≤ ρ2 (‖Z‖) ‖Z‖ , (11)

where the bound for
∥∥∥Ñ0

∥∥∥ is facilitated by adding and

subtracting the expression f0

(
QL, Q̇L, E,R

)
in Ñ0.

The set D ⊂ R2Fm+3 is defined as

D ,

{
ξ ∈ R2Fm+3 | ‖ξ‖ < inf

{
ρ−1

([
√
η,∞

))}}
,

where ρ : R≥0 → R≥0 is a strictly increasing, radially
unbounded function defined as

ρ (‖Z‖) ,
(

3ρ2
0 (‖Z‖)
2k

+
3τ̄2φ2

1ρ
2
1 (‖Z‖)

2k

+ τ̄ (φ1 + τ̄φ2) ρ2
2 (‖Z‖)

) 1
2

, (12)

and the inverse image ρ−1 (Θ) ⊂ R for a set Θ ⊂ R is
defined as ρ−1 (Θ) , {ξ ∈ R | ρ (ξ) ∈ Θ}. The stabilizing
set of initial conditions, S, is defined as

S ,

{
ξ ∈ D | ‖ξ‖ <

√
min

{
c
2 ,

m
2 , φ1, φ2

}
max

{
c
2 ,

m̄
2 , φ1, φ2

}
· inf

{
ρ−1

([
√
η,∞

))}}
.

The following assumption provides a sufficient condition
for the subsequent stability analysis by describing how small
the network communication delays should be to ensure
stability for a given network configuration.

Assumption 6. For a given network graph G, the com-
munication delay upper bound τ̄ > 0 is sufficiently small
such that there exists a selection for the gain k such that
τ̄ < 2λmin(LB)

k3 , S 6= ∅, and√
min

{
c
2 ,

m
2 , φ1, φ2

}
max

{
c
2 ,

m̄
2 , φ1, φ2

} inf

{
ρ−1

([
√
η,∞

))}
>√

2

θ

(
3
(
N2
d0 + τ̄2φ2

1N
2
d1

)
2k

+ τ̄ (φ1 + τ̄φ2)

(
Nd2 +

1

4

)) 1
2

.

(13)

Remark 1. Assumption 6 ensures that there exists a selection
for c such that k > 0. Accordingly, let the value for c
be assigned such that 0 < c < k

(
2λmin (LB)− τ̄ k3

)
.

4While the smallest upper-bounding functions of the dynamics in
Ñ0, Ñ1, Ñ2 may not be known, the bounding functions ρ0, ρ1, ρ2 may
feasibly be constructed; for example, a friction coefficient may be unknown,
but a sufficient upper bound can easily be determined.

Assumption 6 also ensures that there exist stabilizing initial
conditions and that the uniform ultimate bound on the
convergence of each agent toward the leader state is within
the considered domain D.

Remark 2. Due to the presence of k and τ̄ in (12), there
exists a sufficiently small value for τ̄ such that there exists
a sufficiently large gain k such that τ̄ < 2λmin(LB)

k3 and

inf

{
ρ−1

([
√
η,∞

))}
> δ for any δ ∈ R>0, i.e., the set

S can contain any initial condition for a small enough delay
upper bound τ̄ .

Theorem 1. The communication-delayed controller in
(3) provides UUB synchronization for a network of
agents with dynamics given by (1) in the sense that
lim supt→∞ ‖qL (t)− qi (t)‖ ≤ ε for every follower agent
i ∈ VF for all y (0) ∈ S, provided that Assumptions 1-6 are
satisfied and the gain λ satisfies

λ >
1

2
, (14)

where the constant ε ∈ R is defined as

ε ,

√
2 max

{
c
2 ,

m̄
2 , φ1, φ2

}
θmin

{
c
2 ,

m
2 , φ1, φ2

} (3
(
N2
d0 + τ̄2φ2

1N
2
d1

)
2k

+ τ̄ (φ1 + τ̄φ2)

(
Nd2 +

1

4

)) 1
2

.

Proof: (Sketch) Consider the candidate Lyapunov func-
tion VL : D × R→ R≥0 defined as

VL ,
c

2
ETE +

1

2
RTMR+ φ1Ψ1 + φ1Ψ2 + φ2Ψ3, (15)

which satisfies the inequalities

VL (y, t) ≥ min
{ c

2
,
m

2
, φ1, φ2

}
‖y‖2 ,

VL (y, t) ≤ max
{ c

2
,
m̄

2
, φ1, φ2

}
‖y‖2 ,

for all y ∈ R2Fm+3 and t ∈ R, where the block inertia
matrix M is interpreted as a function of time. By using the
closed-loop error system in (6), the Leibniz rule, Young’s
inequality, nonlinear damping, and the inequality

kRT
Γ∑
l=1

AlΥl ≤
τ̄ k4

2
RTR+

ΓĀ

2k2

ˆ t

t−τ̄

∥∥∥Q̈ (s)+λQ̇ (s)
∥∥∥2

ds,

the derivative of the Lyapunov function can be upper-
bounded as

V̇L ≤−
θ

2
‖y‖2 ∀ ‖y‖ ≥

√
2

θ

(
3
(
N2
d0 + τ̄2φ2

1N
2
d1

)
2k

+ τ̄ (φ1 + τ̄φ2)

(
Nd2 +

1

4

)) 1
2

(16)

for all y ∈ D. By (16), [26, Theorem 4.18] and Assumption
6,

lim sup
t→∞

‖qi (t)− qL (t)‖ ≤ lim sup
t→∞

‖y (t)‖ ≤ ε
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for all i ∈ VF and y (0) ∈ S , since ‖qL − qi‖ ≤
‖QL −Qi‖ = ‖E‖ ≤ ‖y‖ for all i ∈ VF . Hence, since
y, qL, q̇L ∈ L∞, it is clear that qi, q̇i ∈ L∞ for all i ∈ VF ,
and the control effort is bounded during the entire state
trajectory.

Although this stability analysis only provides sufficient
conditions, the restriction in Assumption 6 and the UUB
nature of the result in Theorem 1 correspond with several
intuitive notions about communication-delayed networked
systems:
• communication-delayed systems may not be stable for

arbitrarily large gains in proportional and derivative
feedback control,

• a larger communication delay may shrink the set of
stabilizing initial conditions and increase the ultimate
upper bound of the norm of the tracking error trajectory,

• quickly varying communication delays may shrink the
set of stabilizing initial conditions and increase the
ultimate upper bound of the tracking error trajectory
(due to the presence of ω in S2).

Furthermore, as the delay upper bound tends toward zero
(ignoring the singularity of τ̄ ≡ 0, which obviates the need
for the LK functional-based approach taken in this paper),
the effects of the delay vanish and the stability analysis
resembles that of a high-gain robust control analysis, such
as in [4].

Additionally, note that while the controller in (3) is de-
centralized in communication, gain selection is a centralized
process that occurs prior to controller implementation.

VI. CONCLUSION

A stability analysis is presented which provides suffi-
cient conditions for UUB leader-synchronization of a net-
work of communication-delayed agents using a decentralized
neighborhood-based PD controller. The agents are modeled
with dynamics described by heterogeneous, uncertain Euler-
Lagrange equations of motion affected by time-varying,
unknown exogenous disturbances. The communication de-
lay is considered to be heterogeneous, time-varying, and
uncertain. Salient dependencies for the sufficient conditions
for stability in synchronization are the upper bound of the
heterogeneous communication delays, feedback gains, and
network connectivity. Some prominent assumptions are that
there is no delay in communication from the network leader,
the dynamics and input disturbances are sufficiently smooth,
the follower communication network is undirected, and at
least one follower agent receives information from the leader.
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